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Introduction

Human pluripotent stem cells (hPSCs) have emerged as the most promising cellular source for cell therapies. To overcome the scale-up limitations of classical 2D culture systems, suspension cultures have been developed to meet the need for large-scale culture in regenerative medicine. Despite

constant improvements, current protocols that use microcarriers or generate cell aggregates only achieve moderate amplification performance. Here, guided by reports showing that hPSCs can self-organize in vitro into cysts reminiscent of the epiblast stage in embryo development, we
developed a physio-mimetic approach for hPSC culture. We engineered stem cell niche microenvironments inside microfluidics-assisted core-shell microcapsules. We demonstrate that lumenized three-dimensional colonies significantly improve viability and expansion rates while maintaining
pluripotency compared to standard hPSC culture platforms such as 2D cultures, microcarriers, and aggregates. By further tuning capsule size and culture conditions, we scale up this method to industrial-scale stirred tank bioreactors and achieve an unprecedented hPSC amplification rate of 27/7/-
fold in 6.5 days. In brief, our findings indicate that our 3D culture system offers a suitable strategy both for basic stem cell biology experiments and for clinical applications.
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Conclusion

Hollow alginate capsules with reconstituted niche-like microenvironment can promote the formation and growth of 3D hPSC colonies and provide the necessary protection for scaling up the production in stirred tank bioreactors. Self-organized encapsulated colonies seem to be instrumental for
optimal expansion by preserving stem cells’ physiological properties. We have demonstrated that our stem cell technology can deliver unprecedented scalability. We anticipate that cell quality is maintained based on extremely high viability, which is taken as a primary signature of cell fitness.
Defined matrixes can be substituted to basal membrane extract-based ECMs such as Matrigel™ while enabling higher reproducibility

Perspectives

Future works should focus on assessing the hPSCs quality in vivo-like culture systems since the emergence of mutations during culture may be the last limitation to overcome for cell therapy bioproduction.
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